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Abstract—Predicting Origin-Destination (OD) flow is a crucial
problem for intelligent transportation. However, it is extremely
challenging because of three reasons: first, correlations exist
between both origins and destinations; second, the correlations
are dynamic across the time; at last, there are multiple corre-
lations from different aspects. To the best of our knowledge,
existing models for OD flow prediction cannot tackle all of
these three issues simultaneously. We propose Multi-Perspective
Graph Convolutional Networks (MPGCN) to capture the complex
dependencies. Our proposed model first utilizes long short-term
memory (LSTM) network to extract temporal features for each
OD pair and then learns the spatial dependency of origins and
destinations by a two-dimensional graph convolutional network.
Furthermore, we design a dynamic graph together with two static
graphs to capture the complicated spatial dependencies and use
an average strategy to obtain the final predicted OD flow. We
conduct extensive experiments on two large-scale and real-world
datasets, which not only demonstrate our design philosophy but
also validate the effectiveness of the proposed model.

Index Terms—Origin-destination traffic prediction, graph con-
volutional network, spatial-temporal data analysis.

I. INTRODUCTION

Thanks to the development of ride-hailing software, such as

Uber and Didi, many traffic data in the urban area have been

widely collected and recorded to support traffic prediction,

specifically Origin-Destination (OD) flow prediction. OD flow

prediction aims to predict how much volume will be from

a specific origin to another specific destination in the next

time slot when given some side information. Typical types of

side information are history traffic information which records

traffic flows in previous time slots, geographic information

which describes longitude and latitude of regions, and point of

interest (PoI) information which identifies important artificial

building inside one region. OD flow prediction is a crucial

task in the intelligent transportation area, which benefits a

variety of applications such as ride-hailing order dispatching,

traffic congestion avoidance, event detection, etc [1], [2]. Many

models have been proposed to solve OD flow prediction [1]–

[7], the main challenges inside this problem are:

* Work done while the author was a PhD student at University of Southern
California.

Fig. 1. An overview of the proposed multi-perspective GCN (MPGCN)
model. First, MPGCN extracts temporal features from the historical values for
each OD pairs, then we use such temporal features to go through multi- layer
two-dimensional graph convolutional network to capture both the correlation
about origins and destinations, and finally average the outputs of GCN of both
static and dynamic graphs for OD pairs prediction.

• Challenge 1: Two-side Correlations [5]. For OD flow data,

correlations exist in both the origins and the destinations.

The OD flows will be dependent when their origins are

the same/similar and the destinations are the same/similar.

The dependencies between regions are often represented by

graphs [3], [4].

• Challenge 2: Dynamicity [6]. The correlations between

regions are dynamic, which is changing over time. However,

the graph constructed by external data sources, such as

adjacency graph or PoI similarity graph is usually static,

because the external data sources are often not time-varying.

• Challenge 3: Information Fusion [4]. Constructed graphs

include both static graphs and dynamic graphs, how to

effectively and comprehensively fusing and exploiting such

multiple aspects of the complex relationships to enhance

prediction accuracy for large-scale datasets is difficult.

In this paper, we propose a novel model, i.e., Multi-

Perspective Graph Convolutional Network (MPGCN), to si-

multaneously deal with all the above challenges. First, we

conduct graph convolution on both the origin dimension and

the destination dimension of OD tensor. Second, we design

one dynamic graph for representing the dynamic correlations

of regions as origins or destinations calculated by the historical

OD flow data. Furthermore, we exploit an average fusion
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strategy to capture the complex spatial correlations. Finally, we

evaluate our model on two large-scale and real-world datasets

collected from Shanghai and Beijing. Experimental results

show the effectiveness of the proposed MPGCN over other

state-of-the-arts models.

II. RELATED WORK AND BACKGROUND

OD Flow Prediction: OD flow prediction is a crucial prob-

lem in intellectual transportation area. To solve this problem,

there are traditional models such as Autoregressive Integrated

Moving Average model (ARIMA) [8], Support Vector Re-

gression (SVR) [9], factorization-based methods [1], [2], etc;

and deep learning based methods [10] usually use RNN (e.g.

LSTM or GRU) to capture the long-term dependency of OD

pairs to achieve better performance. These models usually

cannot successfully capture complex relationships and suffer

from low efficiency. Different from them, our model can

capture both the long-period dependency and the complicated

spatial correlations between different regions for information

propagation. There are also abundant works [4], [11] about

region-wise flow prediction, which is highly related to OD pair

prediction. These works only focus on predicting the value of

one of origin and destination instead of both of them, i.e., they

predict a value (e.g. in/out flow) for each region, and we need

to predict a value for each pair of two regions.

Graph Convolution Network (GCN): Graph convolutional

graph (GCN) has achieved the unprecedented success on

a series of tasks related to graphs [4], [5], [11]. Given a

relationship graph G = (V,E,A), where V is a set of vertices,

E is a set of edges and A ∈ R
N×N is the connectivity matrix.

Then, the graph Laplacian is

L = I−D−1/2AD−1/2, (1)

where D is the degree matrix and I is an identity matrix.

GCN generalizes the convolution operation from CNN on

graph based on graph Laplacian, which generates a signal

from lth layer, i.e., Xl, to (l + 1)th layer by Xl+1 =
σ(
∑K−1

k=0 αkTk(L)Xl), where Tk(·) denotes the Chebyshev

polynomial [12] of degree k. Aside from 1D graph signal,

there are many 2D graph signals in the real world. For

example, OD matrix can be regarded as a 2D signal on the

graph of origins and the graphs of destinations; user-item

rating matrix is a 2D signal on the user network and the item

network. Mofnti et al. [5] propose 2DGCN which extends

GCN to 2D graph signals. Different from traditional GCN,

2DGCN operates on a matrix that both rows and columns can

be regarded as features, i.e., the raw index is corresponding to

a node as well as the column index. Specifically, X = {xij},

where xij means a value associated with the pair of (i-th
node in G1, j-th node in G2). Thus, the 2DGCN can be

defined as Xl+1 = σ
(∑K−1

i=0

∑K−1
j=0 αijTi(L)XlTj(L

T )
)

,

where αij ≥ 0 is the convolution coefficients.

III. PROPOSED METHOD

We denote the set of regions as V = {v1, v2, · · · , vN},

where vi denotes the i-th region. For each time slot, OD flow

is represented by a matrix X where xij is the number of orders

that the taxis go from vi in this time slot to vj .
Definition 1 (OD Flow Prediction): Given historical OD

Xt−T ,Xt−T+1, · · · ,Xt−1, the geographic information and

PoI information of each regions, we need to predict Xt.
Such OD flows are dynamic across time and contain in-

trinsic temporal dependency. We exploit LSTM to model

such temporal dependency. To model the similarity between

regions, we not only use the external data source as side

information but also can extract the similarity from the histori-

cal OD flows dynamically. Furthermore, there are correlations

between origins and destinations requiring joint modeling, so

we exploit 2DGCN to model both of them. With all these

designs, our model, named Multi-Perspective Graph Convo-

lutional Network, can fit the characteristics of OD prediction

problem and achieve advanced performance. To be clearer,

the main steps of our method for OD flow prediction are

summarized in Algorithm 1.

Algorithm 1 MPGCN: OD flow prediction via multi-

perspective GCN.

Require: Historical OD X , Multiple Graphs {G};

1: Extract temporal features;

2: Construct Dyn. graph by historical OD flow;

3: Construct Adj. graph by geographic information;

4: Construct PoI. graph by PoI information;

5: for graph in [Adj., PoI., Dyn.] do
6: Train 2DGCN model with graph;

7: Predict the OD flow by 2DGCN with Graph

8: end for
9: Integrate the results from the above three models.

10: return OD flow in the next time slot.

1) Representing Intra Region Dynamicity by Temporal Fea-
tures (step 1): In this step, we treat historical values associated

with each OD pair as an individual time series and extract tem-

poral features for each OD pair individually. First, we extract

five historical values for temporal features construction: the

values of one week ago, one day ago and the most recent three

time slots. Then, we feed historical OD flow into an LSTM,

which can capture both short and long term dependency, and

finally obtain the hidden vectors for OD pairs H(0) as follows,

H(0) = LSTM(Xt−24×7,Xt−24,Xt−3,Xt−2,Xt−1).
2) Representing Between-Region Dynamicity by Dynamic

Graphs (step 2-4): The key intuition here is that as origins,

we use the distributions of how many traffic are from these

places to all the destinations as features. First, we average the

traffic tensor of the same hours in different days, to form an

OD tensor with the temporal dimension length of 24 hours.

We denote such tensor as X(h), where x
(h)
ijk is the traffic from

i-th origin to j-th destination in k-th time slot. To measure

the correlation between two origins, we use cosine similarity

because (i) the value is limited ranging from 0 to 1; (ii) the

larger the cosine value, the more correlated two origins are.

Thus the correlation between i1-th and i2-th origin is,

corrt(Oi1 , Oi2) = cos(X(h)[i1, :, t], X
(h)[i2, :, t]). (2)
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The correlation between two destination can be calculated

similarly. We share the GCN filter parameters across time but

use different graphs in different time slots and also different

graphs for origins and destinations.

3) Capturing two-side correlation by 2DGCN on Tensor
(step 5-8): Motivated by [4], we conduct GCN for both origins

and destinations, i.e., we extend GCN into a 2DGCN for

such a 2D signal on graphs. Specifically, when passing such

a 2DGCN, the calculation is as follows,

H(l+1)=σ(
K−1∑
i=0

K−1∑
j=0

H(l)×1Ti(L1)×2Tj(L2)×3W
(l)
ij ), (3)

where ×n means the matrix multiplication on the n-th di-

mension of the tensor, L is the Laplacian matrix obtained by

Eqn. (1), W
(l)
ij is the learnable weight matrix for l-th layer

and the degree of (i, j) for GCN, i.e. filter for GCN, H(l) is

the hidden state in the l-th layer whose three dimensions are

corrisponding to origins, destinations and feature dimension

respectively, and σ(·) is the activation function for introducing

non-linearity. Such operations on the original 2D graph signal

H have explicit physical meanings: the feature in the position

of m-th row and n-th column H×1 Ti(L1)×2 Tj(L2) means

the average feature that from m-th region’s i-hop neighbours

to n-th region’s j-hop neighbours. We make the temporal

features extracted by the temporal correlation module go

through multiple layers. On one hand, the information can be

propagated more hops by feed through multiple layers; on the

other hand, more layers can lead to more non-linearity which

is associated with stronger representation ability.

After feeding through several layers of such 2DGCN, we

use a linear regression layer for obtaining the predicted traffic

matrix, i.e., we aggregate the feature dimension into 1 as

following, X̂ = H(L) ×3 W
(L), where X̂ ∈ R

N×N .

4) Information Fusion by Integration of Features (step 9):
Multiple relationships exist between regions, such as two

regions are close or two regions have PoIs with similar

functions. Besides a series of dynamic graphs to capture

time-dependent relationship, we construct two static graphs

including adjacency graph and PoI similarity graph to cap-

ture the time-independent relationships as in [4]. Adjacency

graph describes whether two regions are adjacent, while PoI

similarity graph represents whether two regions are similar

in function reflected by its distribution among different PoI

categories. When we use the two static graphs, the graphs

for origins and destinations are the same across the time.

We separately train three neural networks with three different

kinds of graphs, and integrate the prediction results obtained

by three models by an average strategy to obtain the best

result, which is better than the result obtained by each graph

individually.

Since there are some OD pairs usually being 0 across time,

so we determine the OD pair which is non-zeros and only take

this part into account for calculating the errors. We denoted

such a binary matrix by Y with the same shape of X̂, where

the entry yij = 1 if the corresponding pair is usually non-

zero (the proportion ≥ 10%) and otherwise is 0. By this, we

calculate the Mean Square Error (MSE) for the training loss

J as J =
∑

i,j (yij(xij−x̂ij))
2
/
∑

i,j yij , which is minimized to

train all the parameters of our network. Due to the parameter

space of multiple GCNs with different graphs, we tune the

hyper-parameters of each GCN individually. For each graph,

we first initialize all the parameters randomly and then train

the LSTM and GCN jointly, which is optimized by Adam [13].

We average the predicted results from multiple GCNs as the

final predicted result.

IV. EVALUATION

A. Experiments Setup

1) Datasets: We conduct our experiments on two large-

scale ride-hailing datasets collected by Didi Chuxing in two

cities in China, i.e., Beijing and Shanghai, from Nov. 8th 2018

to Dec. 30th 2018. We divide each city into small squares of

size 3km×3km, which generates 17×10 grids in Beijing and

18×9 grids in Shanghai. We have 52, 191, 284 ride-hailing

records in Beijing and 44, 825, 098 ride-hailing records in

Shanghai. These eight weeks’ data are granular in hours. We

split each dataset into three parts: the first four weeks’ data

for training, the following two weeks’ data for validation, and

the last two weeks’ data for testing.

2) Task Description: As mentioned in Section III, given the

historical OD matrix and the relationships between regions

represented by graphs, we use different models to predict

the OD matrix in the next time slot. In all the following

experiments, we set the time granularity as 1 hour. Specifically,

given the previous historical values of OD flows, we predict

the OD flow in the next time stamp.

3) Evaluation Metric: Following the manner in [1], [4],

we use root mean square error for evaluating performance,

i.e., RMSE(X, X̂) =
√

∑N
i=1

∑N
j=1 (xij−x̂ij)

2yij/
∑N

i=1

∑N
j=1 yij ,

where xij is the ij-entry of the real flow matrix X, x̂ij is the

ij-entry of the predicted flow matrix X̂ and ŷij is the ij-entry

of the indication matrix Y.

4) Compared Methods: The following methods are com-

pared. (i). History Average (HA). It calculates the OD matrix

in t-th time slot by averaging the OD matrices of the same

time slots in previous weeks. (ii). Lasso, Ridge. These two

methods use linear regression based on its own historical

values with L1 regularizer and L2 regularizer, respectively.

(iii). LSTM [10]. It uses the historical values to feed in a

LSTM to make the prediction for each time series individually.

(iv). MURAT [3]. We adapt this method by jointly using graph

embedding to extract the features of regions and LSTM to

extract temporal features of OD pairs for predicting OD flows.

(v). MGCN [4]. It conducts the convolution with multiple

graphs, which can only capture the relationships from the

origin side or the destination side but not the both. (vi).

Finally, our model, denoted by MPGCN, integrating all results

obtained by 2DGCN with adjacency graph, PoI similarity

graph and dynamic correlation graph.
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5) Experiment Settings: We choose Chebyshev polynomial

function [12] for the GCN form and Rectified Linear Units

(ReLU) as the activation function after the linear manipula-

tion. In terms of training our model, we exploit Adam [13]

for optimizing. To obtain convincing results for performance

comparison, we repeat each experiments five times to calculate

the mean and standard error of both measurements. All codes

are implemented in pytorch and run on a single Tesla P40.

B. Overall Comparison

From the Tab.I, we can observe that our model outperforms

all the baselines. Generally, the deep models are better than the

traditional models because of the strong expression ability of

deep models. For temporal feature extraction, in most cases,

we can observe that LSTM is better than linear regression

(Lasso and Ridge) because it can better capture the sequential

information and introducing non-linear expression ability. Our

model can consistently outperform MURAT for both datasets,

because our model in an end-to-end way exploit graphs for

information propagation. Our method can outperform MGCN,

because MGCN can only capture one side dependency, i.e.,

the relationship between origins or the relationship between

destinations but not both of them. Our method can capture

the multiple perspectives of OD flow predictions, which can

capture both the dependency of origins and destinations, suc-

cessfully model the dynamic relationships between regions and

capture the multi-view relationships. By all of these technical

improvements for OD flow prediction, our model outperforms

all other method by a large margin.

TABLE I
PERFORMANCE COMPARISON FOR OD PAIR PREDICTION.

Methods
Beijing Shanghai
RMSE RMSE

Traditional Models
HA 2.145 1.770

Lasso 2.110 ± 0.025 1.838 ± 0.018
Ridge 2.093 ± 0.006 1.817 ± 0.001

Deep Models
LSTM 2.008 ± 0.006 1.808 ± 0.003

MURAT 2.009 ± 0.009 1.830 ± 0.027
MGCN 1.960 ± 0.004 1.739 ± 0.002

Our Model MPGCN 1.869 ± 0.023 1.678 ± 0.010

C. Results of Different Time Periods

We plot the RMSE of our method and two most repre-

sentative methods, MURAT and MGCN, in the daytime of

workdays and weekends in Fig. 2, because predicting the

daytime OD flow with larger values is more meaningful. From

Fig. 2(a), we can observe that the profile of weekday of RMSE

is basically consistent with the traffic on weekdays and our

method consistently outperform the baselines on both weekday

and weekend. From Fig. 2(b), we can observe that there are

two peaks around 7 : 00 and 17 : 00 for the RMSE profile on

weekend, which is different from the two peaks on weekdays.

V. CONCLUSION

We dig deep into the spatio-temporal dependence of the

problem of OD prediction and designing a GCN-based model

(a) Workday. (b) Weekend.

Fig. 2. Testing RMSE on different time periods in Beijing.

that can successfully capture the dynamic and multiple de-

pendencies for both origins and destinations. We propose

multi-perspective graph convolutional model for OD flow

prediction, which achieves the best performance against all

the state-of-the-art models. We conduct extensive experiments

on two large-scale real-world datasets and demonstrate the

effectiveness and efficiency of our model.
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